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1 Introduction

This note gives a pedagogical introduction to topological string theory. Recent interest in

topological string is largely due to the OSV conjecture ZBH = |Ztop|2, which relates the

partition function ZBH ( for a mixed canonical ensemble )of the extremal four dimensional

black holes and the partition function Ztop of topological string. In this talk I will focus

on the following two Physical Aspects of Topological String Theory from the viewpoint

of the OSV conjecture.

• Topological string counts “stable” objects (BPS states, instantons, solitons, · · · ).
The counting becomes often easier in a (holographic) dual CFT picture, or IR limit

of a dual gauge theory on branes. This is regarded as a topological version of

gauge/string correspondence. For example, GW/DT correspondence is proposed

in mathematics.

• Topological string computes a certain F -term (holomorphic piece) in the low energy

effective action of N = 2 supergravity, including R2 correction terms. This fact

has been crucial in most of recent physical application of topological string theory.
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To explain the reason why I think these aspects are significant, let me present a few

key words in the computation of the entropy of extremal (4D) black holes from string

theory.

• Macroscopic Side

This is the side where OSV conjecture was originally derived. Special geometry

of N = 2 (4D) supergravity combined with the attracter mechanism for extremal

(BPS) black holes is heavily used. By the special geometry relations the central

charges of N = 2 SUSY is expressed in terms of the prepotential which appears in

the low energy effective action describing the coupling of (abelian) gauge multiplets

and gravity multiplet. In type IIB compactification the prepotential is related to the

geometry of Calabi-Yau manifold through the period integral (cf. Seiberg-Witen

theory). Furthermore, the attracter mechanism for extremal black hole tells us

that the near horizon geometry and the horizon area depend only on their electric-

magnetic charges. There are higher derivative corrections to the entropy formula

coming from R2 term in low energy effective action of N = 2 (4D) supergravity.

• Microscopic Side

Several attempts have been made on this side, to confirm or establish the OSV

conjecture. We count the degeneracy of BPS states as bound states of solitons in

string theory, or D-brane configurations. In a dual holographic CFT descriptions,

which is IR limit of the worldvolume theory onD-branes, (for example, SUSY sigma

model whose target space is the symmetric product of K3 surface; a chiral (0, 4)

CFT arising from M5 branes), the counting is achieved by computing a generalized

supersymmetric index (sometimes called elliptic genus). The index is independent

of the coupling constant and we may compute it in the region where solitons are

weakly coupled. A gravitational (geometric) picture emerges in the strong coupling

side and the solitons are identified as extremal black holes.
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2 Formulation

Generalities on topological quantum field theory

Dynamical informations of quantum field theory are obtained by computating the par-

tition function and the correlation function (more generally a generating function of the

correlation functions or low energy effective action). If the theory is defined by the (mi-

croscopic) action S[φ] =
∫

M
dnx L[φ] for a dynamical field variable φ(x) on the space-time

M , the partition function is formally defined by the (Euclidean) path integral;

Z :=

∫

[Dφ]e−S[φ] , (1)

and the N -point function (vacuum expectation values) is

〈O1O2 · · ·ON〉 :=
1

Z

∫

[Dφ]O1[φ]O2[φ] · · ·ON [φ]e−S[φ] , (2)

where Oi[φ] are “observables” or physical operators of the theory. Note that the choice of

physical operators (together with the vacuum |0〉) is a part of the definition of quantum

field theory.

In general the action S[φ] and the operators Oi depends on various parameters such

as (a background) metric gµν on M , coupling constants and the positions of Oi. Hence

the partition function Z and the correlation functions 〈O1O2 · · ·ON〉 also depend on

these parameters. In particular, if they are invariant (or rigid) under continuous local

deformations of background metric,

δ

δgµν

〈O1O2 · · ·ON 〉 = 0, (3)

they are called topological partition function or topological correlation functions. This

condition physically implies there is no local dynamics, or no propagating modes in the

theory. Since this means the correlation function is invariant under local translation (dif-

feomorphism) δx = ε(x), we expect that topological correlation function is independent

of the positions of the operator;

〈O1O2 · · ·ON 〉 ∼ constant (4)
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(There are possibilities of the so-called contact term which appears when more than

two operators collide or intersect.) These constants are mathematically identified as

topological “index” obtained by “counting” appropriate objects, intersection number,

linking number etc. or the (phase space) volume of the moduli space, the parameter

space of the classical equation of motion. Physically it is interpreted as the number of

(stable) states such as solitons and BPS states. (Note that in quantum theory the phase

space volume in the unit of ~ gives the number of quantum states.) If all the correlation

functions in the theory (note that this depends on a choice of vacuum and physical

opearators, which might be empty; Z = 〈0|0〉 = 1 is the only “topological” quantities.),

it is called called topological quantum field theory. Or by appropriate choice of vacuum

together with a set of physical operators in a given theory, one might define a topological

sector of the original theory.

When can we have topological quantum field theory? Such an exotic theory may

occur, when
δS

δgµν

= Tµν = 0 , (5)

which is the case when either the classical action is a topological invariant or the action

does not involve any background metric. Formal manipulation (integration by parts) in

path integral implies

δ

δgµν

〈O1O2 · · ·ON〉 ∼
∫

[Dφ]
δ

δgµν

(O1O2 · · ·ON )e−S

=

∫

[Dφ]O1O2 · · ·ON

δ

δgµν

(e−S) = 0 . (6)

Typical examples are two dimensional gravity and the Chern-Simons gauge theory in

three dimensions. The Einstein-Hilbert action

SEH[g] :=
1

16πGN

∫

dNx
√
g R[g] (7)

is topological (it just gives the Euler number) in two (N = 2) dimensions. The Newton

constant GN is dimensionless only in two dimensions. We have already seen the Chern-

Simons action in several talks in this SI. For examples, the fact that three dimensional
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CS action does not have any dynamical degrees of freedom plays an important role in

the construction of BLG action. The action of the Chern-Simons theory

SCS[A] :=
k

4π

∫

M3

Tr

(

A ∧ dA+
2

3
A ∧ A ∧ A

)

(8)

contains no metric and topological.

The idea of topological quantum field theory was first introduced by Witten in Feb.

1988 (twenty years ago) from a rather mathematical motivation of describing the Donald-

son invariants as correlation functions of quantum field theory. A physical interpretation

he suggested is that TQFT describes a topological phase (in general relativity) where

general covariance is unbroken and massless graviton is confined. Note that the intro-

duction of a (background) metric necessarily breaks the general covariance and massless

gravitons are interpreted as Goldstone bosons arising from the spontaneous breaking of

the general covariance. If we could perform the path integral over all the possible met-

ric in quantum gravity without introducing a classical metric such as a flat metric, we

might obtain an effective theory with general covariance. It is interesting that topological

quantum field theory achieves general covariance without integrating out the background

metric. It seems that this is very similar to our approach to the low energy effective ac-

tion, where we consider what one would obtain after integrating out (irrelevant) massive

degrees of freedom, even if we cannot make the path integral explicitly. In fact Witten

proposed that TQFT might be obtained as low energy effective theory to some kind of

string field theory in a phase where general covariance is unbroken. As an example, he

showed that the Chern-Simons theory on M 3 is obtained as a low energy effective theory

of open string field theory on the cotangent bundle T ∗M3.

To illustrate these abstract discussions on topological theories, let us take the Nambu-

Goto action of string theory;

SNG[X] = − 1

2πα′

∫

Σ

dτdσ
√
−det h , Xµ = Xµ(τ, σ), T := − 1

2πα′ , (9)

where hab := ∂aX
µ∂bXµ is an induced metric. Since this is proportional to the area of the

string world-sheet, it is “topological” and has general covariance. The action is invariant
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under the diffeomorphism of the string world-sheet. Note that the Numbu-Goto action

does not employ any metric on Σ, and thus it gives an example of general covariant theory

without metric. However, it is difficult to quantize the Numbu-Goto action. Introducing

(an auxiliary) world-sheet metric γab we can write down the following action which is

suitable for quantization;

SP[X, γ] = − 1

4πα′

∫

Σ

dτdσ
√−γγab∂aX

µ∂bXµ . (10)

Classical equivalence of SNG and SP is seen as follows; the equation of motion for the

auxiliary metric γab is
1

2
γab(γcd∂

cXµ∂dXµ) = ∂aX
µ∂bXµ . (11)

Thus the metric γab is conformal transform of ∂aX
µ∂bXµ with conformal weight ρ =

2/(γcd∂
cXµ∂dXµ). Substituting the above relation to SP[X, γ], we find the conformal

weight cancels and SP[X, γ] reduces to the Nambu-Goto action. In quantum theory we

expect we can obtain a theory with general covariance by integrating out the auxiliary

metric γab.

In quantum theory the variation of the action with respect to the metric gives first

class constraints on the energy-momentum tensor;

Tab :=
δSP

δγab
' 0 (12)

which is regarded as a consequence of the general covariance. Due to the existence of the

first class constraints, we have to fix a gauge. A modern way of fixing a gauge in quantum

theory is the BRST quantization. In the BRST formalism the first class constraints are

promoted into

Tab = {QB, bab} , (13)

where QB is a generator of fermionic symmetry which is scalar and satisfies Q2
B = 0.

The last condition allows us to introduce the BRST cohomology. The above relation

means the energy momentum is trivial in the sense of cohomology. We can say that

this is a characterizing property of topological quantum field theory. When the theory
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is topological in the sense of BRST cohomology, it is sometimes called “cohomological”

theory. The theory has a scalar fermionic symmetry QB which satisfies the relation of

the coboundary operator Q2
B = 0.

It is crucial that we can obtain such a special symmetry Q2
B = 0 and Tµν = {QB, λµν}

by twisting the extended supersymmetry algebra T = {G+, G−}. The generators of

the supersymmetry transform as spinors. The twisting is a redefinition of the Lorentz

generators or the spin connections and some of the supercharges become scalar under the

redefined Lorentz generators.

Topological twist of N = (2, 2) SUSY sigma-model

Usually string theory is perturbatively defined in terms of the genus expansion. Namely

we consider the string world sheet Σg of a fixed genus g and string amplitudes are com-

puted genus by genus. When the string moves on a (Calabi-Yau) manifold M , we consider

a map

φ : Σg →M , (14)

and the corresponding quantum field theory is called (two-dimensional) sigma model on

Σg with the target space M . The genus g string amplitudes for process on the space-time

M are computed by integrating correlation functions on the world sheet over the moduli

space of Σg, which means physically the coupling to the gravity on Σg.

When the target manifold is a Kähler manifold, we can introduce N = (2, 2) super-

symmetry on the world sheet and the theory on the world sheet is called two dimensional

N = (2, 2) supersymmetric sigma model. To describe it, we introduce the superfields ΦI

and ΦĪ whose lowest components are the bosons

φI,Ī : Σg →M . (15)

Its super partners are two Dirac spinors

ψI
±,+ ∈ Γ(Σg, S

± ⊗ φ∗(T (1,0)M)) , ψĪ
±,− ∈ Γ(Σg, S

± ⊗ φ∗(T (0,1)M)) , (16)

7



where S± are the positive and the negative chirality spinor bundles on Σg with spins ±1
2

w.r.t two dimensional rotation group U(1)E. The complexified tangent bundle TM ⊗ C

is decomposed into the holomorphic and the anti-holomorphic tangent bundles

TM ⊗ C = T (1,0)M ⊕ T (0,1)M , (17)

and φ∗(T (1,0)X) and φ∗(T (0,1)X) are their pull-backs to Σg. (The left indices ± stand for

the chirality on the world sheet Σg and the right indices ± specify the holomorphic and

the anti-holomorphic coordinates on the target space.) The superfields ΦI and ΦĪ also

contain auxiliary fields F I and F Ī .

Let us look at the kinetic terms of fermions, since the twist operator only affects this

part;

Sf,kin =

∫

Σg

d2z GIJ̄(φ)
[

ψJ̄
+,−Dz̄ψ

I
+,+ + ψJ̄

−,−Dzψ
I
−,+

]

, (18)

where the covariant derivatives are defined by

Dz̄ψ
I
+,+ = ∂z̄ψ

I
+,+ +

i

2
ωz̄ψ

I
+,+ + ΓI

KL(φ)∂z̄φ
KψL

+,+ ,

Dzψ
I
−,+ = ∂zψ

I
−,+ − i

2
ωzψ

I
−,+ + ΓI

KL(φ)∂zφ
KψL

−,+ . (19)

They have the spin connection ωz,z̄ of U(1)E on Σg and the pull-backs ΓI
KL∂z,z̄φ

K of

the (Hermitian) connection ΓI
KL of the Kähler metric. The model has a global abelian

symmetry U(1)V × U(1)A, which is called R symmetry. The associated currents are a

conserved vector current

jz
V = GIJ̄ψ

J̄
−,−ψ

I
−,+ , j z̄

V = GIJ̄ψ
J̄
+,−ψ

I
+,+ , (20)

and an anomalous axial vector current

jz
A = −GIJ̄ψ

J̄
−,−ψ

I
−,+(= −jz

V ) , j z̄
A = GIJ̄ψ

J̄
+,−ψ

I
+,+(= j z̄

V ) . (21)

The anomaly of jA is given by the index of Dirac operator

∂µj
µ
A =

∫

Σg

φ∗(c1(M)) , (22)
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where c1(M) is the 1st Chern class of M .

The topological twist of the model may be introduced by promoting a U(1) subgroup

of the global R-symmetry U(1)V × U(1)A to a local symmetry (and identify the corre-

sponding gauge connection with the U(1)E spin connection). That is the action of the

twisted model is obtained by adding to the original action the coupling of the corre-

sponding currents jV and jA with the spin connection. The twisting by jV gives the A

model

Sf −
i

2

∫

Σg

d2z ωµ j
µ
V

=

∫

Σg

d2z GIJ̄

[

ψJ̄
+,−

(

∂z̄ +
i

2
ωz̄

)

ψI
+,+ + ψJ̄

+,−ΓI
KL∂z̄φ

KψL
+,+

+ψJ̄
−,−

(

∂z −
i

2
ωz

)

ψI
−,+ + ψJ̄

−,−ΓI
KL∂zφ

KψL
−,+ − i

2

(

ωz ψ
J̄
−,−ψ

I
−,+ + ωz̄ ψ

J̄
+,−ψ

I
+,+

)

]

=

∫

Σg

d2z GIJ̄

[

ψJ̄
+,−∂z̄ψ

I
+,+ + ψJ̄

+,−ΓI
KL∂z̄φ

KψL
+,+ + ψJ̄

−,− (∂z̄ − iωz̄)ψ
I
−,+ + ψJ̄

−,−ΓI
KL∂zφ

KψL
−,+

]

(23)

By looking at the coupling to the spin connection, we see that the spin of the fermions

is changed as follows;

ψI
+,+ : +

1

2
→ 0 = scalar ψI

−,+ : −1

2
→ −1 = (0, 1) form

ψJ̄
+,− : +

1

2
→ +1 = (1, 0) form ψJ̄

−,− : −1

2
→ 0 = scalar . (24)

Similarly the twisting by jA gives the B model.

According to the change of spin of fermions, we introduce the following notation

χI = ψI
+,+ , χJ̄ = ψJ̄

−,− , ρI
z̄ = ψI

−,+ , ρJ̄
z = ψJ̄

+,− , (25)

χ ∈ Γ(Σg, φ
∗(T (1,0)M ⊕ T (0,1)M)) is a scalar on Σg and ρα ∈ Γ(Σg, K ⊗ φ∗(T (0,1)M) ⊕

K ⊗ φ∗(T (1,0)M)) is a one form on Σg. (The canonical line bundle K is the bundle of

(1, 0) forms on Σg and the anti-canonical bundle K is the bundle of (0, 1) forms on Σg.)
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The full action after the twist of type A is

SA =

∫

Σg

d2z

[

GIJ̄

(

gµν∂µφ
I∂νφ

J̄ +
iεµν

√
g
∂µφ

I∂νφ
J̄ − gµνρI

µDνχ
J̄ − gµνρJ̄

µDνχ
I − 1

2
gµνF̃ I

µ F̃
Ī
ν

)

+
1

2
gµνRĪJK̄Lρ

Ī
µρ

J
νχ

K̄χL

]

. (26)

We have redefined the original auxiliary fields F I
z , F

Ī
z̄ to F̃ I

z , F̃
Ī
z̄ . N = (2, 2) SUSY sigma

model has four fermionic charges Q±,±. After the A twist Q+,+ and Q−,− are scalar and

Q+,− and Q−,+ have spin ±1. We define

Q = Q+,+ +Q−,− , Gz = Q+,− , Gz̄ = Q−,+ . (27)

Then the N = (2, 2) SUSY algebra implies

Q2 = 0 , {Q,Gα} = Hα . (28)

We will identify the nilpotent charge Q as a BRST operator of the A model. Then we

have

SA = {Q, V } + i

∫

Σg

φ∗(ω) (29)

where
∫

Σg

φ∗(ω) =

∫

Σg

d2zGIJ̄

(

∂zφ
I∂z̄φ

J̄ − ∂z̄φ
I∂zφ

J̄
)

(30)

is the pull-back of the Kähler form ω = GIJ̄dx
I ∧ dxJ̄ of the target and

V =
1

2

∫

Σg

d2z
√
ggµνGIJ̄

[

1

2
ρI

µF̃
J̄
ν +

1

2
ρJ̄

µF̃
I
ν +

(

ρI
µ∂νφ

J̄ + ρJ̄
µ∂νφ

I
)

]

. (31)

Thus the action of topological A model is BRST exact modulo the topological term
∫

Σg
φ∗(ω) which counts the winding number (or the instanton number) of the map φ :

Σg → M . We can add a coupling to a B-field (= a background of 2-form flux on M)
∫

Σg
φ∗(B). Then we have a complexified Kähler form J = B + iω.

Since we have

Tµν =
δSA

δgµν
= {Q, δV

δgµν
} = {Q,Gµν} , (32)
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topological A-model is two dimensional topological theory with Q as BRST operator.

The observable of the model are defined to be Q-cohomology class. Namely observables

O satisfies [Q,O]± = 0 and O ∼ O′ if O = O′ + [Q,Λ]±. If the vacuum is Q invariant;

Q|0〉, the correlation function 〈O1O2 · · ·On〉 := 〈0|O1O2 · · ·On|0〉 depends only on the

the cohomology class of the observables

O = O′ + [Q,Λ]± =⇒ 〈OO1 · · ·On〉 = 〈O′O1 · · ·On〉 , (33)

and is topological invariant in the following sense

δ

δgµν
〈O1O2 · · ·On〉 = 〈TµνO1 · · ·On〉 = 0 . (34)

It terns out that observable in topological A model is in one to one correspondence to

the de Rham cohomology of the target space.

Topological string = Coupling to (topological) gravity

Topological string theory is defined by coupling topological sigma model with topological

gravity on the string world sheet. This coupling can be achieved in the same way to the

(physical) bosonic string theory, by making use of the similarities of BRST structures of

both theory. In the path integral formulation the coupling to 2D gravity is defined by

an integral over the moduli space Mg of Riemann surface of genus g. We note that the

same integral is used in the perturbative formulation of bosonic string theory, where the

energy momentum tensor is given by

T (z) = {QB, b(z)} , (35)

The point is that the twisted topological sigma model has the same BRST structure1;

Tµν = {Q,Gµν} . (36)

1Here Tµν and Gµν are Noether currents. Compare with (28) where the algebra is written in terms

of charges.
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Thus we can completely follow the prescription of the perturbative definition of the

amplitudes of bosonic string theory and define perturbative topological string amplitudes.

The free energy of genus g > 1 is

Fg =

∫

Mg

〈
6g−6
∏

k=1

(G, µk)〉 ,

(G, µk) =

∫

Σg

(Gzz(µk)
z
z̄ +Gz̄z̄(µ̄k)

z̄
z) . (37)

The case of g = 0, 1 requires special cares, since there are symmetries (Killing vectors) in

the lower genus surface. On the Riemann surface of general type g ≥ 1, there are 6g− 6

Beltrami differential µk = (µk)
z
z̄dz̄⊗ ∂

∂z
∈ H1

∂̄
(Σg, T

(1,0)Σg). They are associated with the

deformation of complex structure of Σg, whose moduli space Mg has dimensions 6g− 6.

The integrand gives 6g − 6 form on Mg.

The topological correlation function 〈∏6g−6
k=1 (G, µk)〉 can be computed by semi-classical

approximation of path integral, which reduces to the integral over the moduli space, the

parameter space of equation of motion. Or the path integral localizes to the fixed points

of BRST transformations. From the BRST transformation law of the anti-ghost ρ, which

gives EOM (gauge fixing condition) of topological theory, we see that the (world sheet)

instantons are holomorphic maps φ : Σ → M . The holomorphic maps are topologically

classified by instanton number (or the winding number) as follows; Let us introduce a

basis [Si], i = 1, · · · , b2(M) = dimH2(M,Z) of the second homology of M . Then the

topological types of instantons is classified by the (second) homology class β = φ∗[Σg] ∈
H2(M,Z) =

∑b2(M)
i=1 ni[Si]. The integers ni are called instanton number. The weight of

the instanton sector comes from the topological term in the A model action.

SA = {Q, V } +

∫

Σg

φ∗(J) (38)

Recall that J = B + iω is the complexified Kähler form. In terms of the (complexified)

Kähler parameter ti =
∫

Si
J each sector is weighted with Qβ =

∏b2(M)
i=1 Qni

i , with Qi =

e−ti . Thus we obtain the following form of the free energies Fg, (g ≥ 1) of the type A
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topological string;

Fg(t) =
∑

β∈H2(M,Z)

Ng,βQ
β . (39)

The number Ng,β is called the Gromov-Witten invariants of M at genus g in the class β.

Finally the partition function of (perturbative) topological string is defined by

Ztop = exp

( ∞
∑

g=0

g2g−2
s Fg(t)

)

, (40)

where the string coupling gs plays the role of parameter of genus expansion. Since the

topological term depends only on the (complexified) Kähler form J = B + iω , topolog-

ical partition function (which also gives a generating function of topological correlation

function of two form observables) are functions of the Kähler moduli {ti}, i = 1, · · · b2(M).

3 Computation

BPS state counting in five dimensions

Let us consider a compactification of M theory to five dimensions on a Calabi-Yau

threefold X. M theory on X has U(1)n gauge symmetry where n = b2(X), since a

dimensional reduction of M theory three-form C on each two-cycle gives rise to a U(1)

gauge field. An M2 brane wrapped on a two-cycle gives a charged particles under the

corresponding U(1). We could ask the number of BPS states with a given charge Q ∈
H2(X,Z). Actually in five dimensions BPS states can carry non-vanishing spin. In five

dimensions the spin of massive particles is classified by SO(4) ' SU(2)L × SU(2)R and

BPS states have to satisfy jL = 0 or jR = 0. Hence we want to count the number of BPS

states with charge Q and spin jL.

We can find these BPS state degeneracies, which is called the Gopakumar-Vafa invari-

ants from topological string amplitude. This is closely related to the fact that topological

string amplitudes at genus g computes the following F -term in the low energy effective
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action of the four dimensional N = 2 SUSY theory obtained by type IIA string on X;

∫

d4x

∫

d4θFg(t)(W2)g + c.c. =

∫

d4xFg(t)
(

R2
+F

2g−2
+ +R2

−F
2g−2
−

)

. (41)

The reasoning roughly goes as follows; in type IIA compactification the coefficients Fg(t)

is obtained by computing the (super)string amplitude of 2 gravitons and 2g−2 gravipho-

tons. Since the graviphoton comes from RR sector, looking at the couping of RR states

and the dilaton, which is in the hypermultiplets in type II theory, we see that Fg(t) is

exactly given by genus g amplitude. Another crucial point is that the insertion of (2g−2)

graviphotons induces an effective coupling
∫

Σg

√
3

2
H · R(2), where ∂H = jV is the U(1)

current which we have used to twist the SUSY sigma model. Finally after the cancella-

tion of contributions from bosons and fermions, we end up with the integration over the

supermoduli space of the worldsheet Σg. Integration of the Grassmannian coordinates

of the supermoduli and the cancellation of superghost charge can be made by inserting

an appropriate number (namely 3g − 3) of the picture changing operator, which, in this

case, is given by the supercurrents G±. Thus we find the topological string amplitude we

have defined before.

Thus if we consider a self-dual graviphoton background F+ = gs, F− = 0 in the

Euclidean version of the theory, the coupling in the effective action to R2
+ is nothing but

the all genus topological string amplitude

∞
∑

g=0

Fg(t)g
2g−2
s (42)

On the otherhand, we can obtain the same R2
+ correction terms from the effective action

of charged particle, and we can compute it exactly if graviphoton background is constant,

as we will see shortly. In the strong coupling limit only the BPS multiplets contribute to

the low energy effective action. This gives a basic identification of (A model) topological

string amplitude with a generalized SUSY index which gives the degeneracy of BPS states.

In the computation of the R2
+ correction to the low energy effective action, the relevant

charged particles are the quanta of N = 2 hypermultiplets obtained by quantizing the
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wrapped D2 and D0 branes. If D2-brane is wrapped on a cycle Q and bound to k D0-

branes, the central charge is Z = 〈Q, t〉 + ik and the BPS state has the mass m = |Z|.
Let us consider the non-perturbative correction to the low energy effective action due

to the pair production of such BPS particles. Since they are in the hypermultiplet the

contribution to the vacuum energy cancels, but there is non-trivial contribution to R2
+

term. It turns out that it is precisely the same as the lowest component of the multiplet

would contribute to the vacuum energy, which can be computed non-perturbatively by

the proper time or heat kernel expansion as follows;

Let us consider a charged particle of charge q and mass m in a constant self-dual U(1)

flux in four dimensional (Eucilidian) space. We will compute the contribution to (non-

perturbative) low energy effective action, from the charged (BPS) particle in a constant

gravi-photon background 2

F12 = F34 = gsµ
2 . (43)

The low energy effective action is obtained by the path integral of the microscopic action

S = |(∂i − iqAi)φ|2 +m2|φ|2 , (44)

for complex scalar φ, which is Gaussian. We obtain

Seff = log det (∆12 + ∆34 +m2) , (45)

where ∆ij = D2
i +D2

j is the covariant Laplacian with gauge potential. Note that

[D1, D2] = [D3, D4] = iqgsµ
2 . (46)

Using the heat kernal expansion (the proper time expansion), we have

log det (∆12 + ∆34 +m2) = Tr log(∆12 + ∆34 +m2) =

∫ ∞

ε

dt

t
Tr e−t(∆12+∆34+m2) . (47)

From the computation of the partition function of the harmonic oscillator, we find

Tre−t(∆12+∆34+m2) = e−tm2

( ∞
∑

n=0

e−tqgsµ2(n+ 1

2
)

)2

=
e−tm2

(

2 sinh tqgsµ2

2

)2 , (48)

2Note that gs should be dimensionless. We have inserted µ to keep track of the mass dimension.
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Thus we finally obtain

Seff =

∫ ∞

ε

dt̃

t̃

e−qt̃

(

2 sin t̃gs

2

)2 , (49)

where we have used the BPS condition m = qµ and put t̃ = tqµ2. By an appropriate

regularization this agrees to the free energy of c = 1 string theory at self-dual radius;

Fc=1(m; Λ) = g−2
s

(

1

2
m2 log

m

Λ
− 3

4
m2

)

− 1

12
log

m

Λ
+

∞
∑

g=2

g2g−2
s

B2g

2g(2g − 2)
m2−2g , (50)

where Λ is a regularization parameter and B2g is the Bernoulli number defined by

x

ex − 1
=

∞
∑

n=0

Bn

n!
xn , B0 = 1, B1 = −1

2
, B2 =

1

6
· · · , (B2k+1 = 0, k > 0) (51)

In c = 1 string theory m is identified with the cosmological constant. It is remarkable

that the coefficients of this genus expansion gives the Euler number of the moduli space

Mg of the Riemann surface with gunes g. This is somewhat a surprising result, one of

the miracles in string theory. We have just computed an effective action of charged BPS

particle in a constant flux. There is no Riemann surface at all. But the expansion coef-

ficients in gs automatically gives informations on the moduli space of Riemann surface.

Thus the BPS particle somehow knows the geometry of string worldshhet.

Now the charge spectrum of D2-D0 system is

Z = 〈q, t〉 + 2πik, k ∈ Z \ {0} . (52)

Summing up the number of D0 branes, or the K-K modes of S1 compactification, we

obtain

F (gs) =
∑

k∈Z,k 6=0

∫ ∞

ε

ds

s

e−2πiks−〈q,t〉s
(

2 sinh sgs

2

)2 . (53)

By the Poisson resummation formula

∑

k∈Z,k 6=0

e2πiks =
∑

m∈Z

δ(s−m) , (54)

we obtain

F (gs) =

∞
∑

m=1

1

m

e−m〈q,t〉
(

2 sinh mgs

2

)2 . (55)
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Thus by summing up the KK-modes or (the number of D0 branes) we can avoid the

integration of the proper time s which also removes the dependence on the cut-off. Thus

we find the R2
+ correction

∞
∑

m=1

1

m

e−m〈q,t〉
(

2 sinh mgs

2

)2 . (56)

as the free energy of topological string It is suggestive the partition function (the expo-

nential of the free energy) has an infinite product form

Z =
∞
∏

n=1

(

1 − qne−β(t)
)−n

, (57)

where q := e−gs and β(t) := 〈q, t〉.
It is easy to generalize the above computation to the case where the hypermultiplet

has non-zero left spin jL = s. The result is

Z =

∞
∏

n=1

(

1 − qn+se−β(t)
)±n

, (58)

where the sign is + for fermions and − for bosons. Summing up all the contributions,

we see that the free energy of topological string tales the following form;

logZ(t) =

∞
∑

j=0

∑

β∈H2(X,Z)

nj,β

[ ∞
∑

m=1

(

2 sinh
mgs

2

)2j−2

e−mβ(t)

]

. (59)

In the trivial instanton sector β = 0, which is the contribution of constant maps to

the topological string amplitude. The partition function

Z =
∏

n

1

(1 − qn)n
=
∑

P.P.

q|π| (60)

coincides with the MacMahon function M(q), which is known as the generating function

of the plane partitions π (or 3D Young diagrams). In the strong coupling region gs →
∞, |q| << 1, we can expand the partition function

M(q) = 1+q+3 q2+6 q3+13 q4+24 q5+48 q6+86 q7+160 q8+282 q9+500 q10+· · · (61)

The coefficient of qN gives the number of plane partitions (3D Young tableaux) with

N = |π| boxes. This is what is the (quantum) crystal picture of topological string in the
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strong coupling, which also allows an interpretation in terms of U(1) (topological) gauge

theory on D6 brane.

To obtain an expansion of free energy in the weak coupling gs → 0, q → 1, let us

look at its Mellin transform with t := gs

G(s) :=

∫ ∞

0

dt

t1−s
F (t) = −

∫ ∞

0

dt

t1−s

∞
∑

d=1

∞
∑

n=1

n

d
e−ndt . (62)

Exchanging the integral and sums, we obtain

G(s) = −
∑

n1−sd−1−s

∫ ∞

0

dx

x1−s
e−x = −ζ(s− 1)ζ(s+ 1)Γ(s) . (63)

The inversion formula of the Mellin transform is

F (t) =
1

2πi

∫

Re (s)=s0

ds G(s)t−s , (64)

where the contour is chosen to lie to the right of any pole of G(s). Deforming the contour

we see that the poles of G(s) generate the laurent series expansion of M(t). Now Γ(s)

has simple poles at s = −n, n = 0, 1, 2, · · · with residue (−1)n

n!
and ζ(s) has simple pole

at s = 1 with residue 1 and simple zeros at s = −2,−4,−6, · · · . (All other zeros of ζ(s)

are in the region 0 < Re s < 1 and they are actually on the line Re s = 1
2

is the famous

Riemann conjecture.) Therefore ζ(s−1)ζ(s+1)Γ(s) has simple pole at s = 2, double pole

at s = 0 and simple poles at s = −2n, n ∈ N. Note that the poles at s = −1,−3,−5 · · ·
are canceled by the zeros of the zeta function. Thus we obtain

F (t) =−
[

ζ(3)Γ(2)t−2 + lim
s→0

d

ds

(

ζ(s− 1)t−s
)

+

∞
∑

n=1

1

(2n)!
ζ(1 − 2n)ζ(−1 − 2n)t2n

]

= ζ(3)g−2
s − ζ ′(−1) − 1

12
log(−igs) +

∑

g≥2

(−1)gB2gB2g−2

(2g − 2)!2g(2g − 2)
g2g−2

s , (65)

where we have used ζ(−1) = − 1
12
, ζ(1 − 2n) = −B2n

2n
. The coefficients give the value of

the Hodge integral on Mg.
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