International Organization for Standardization Organisation Internationale de Normalisation ISO/IEC JTC1/SC29/WG11 Coding of Moving Pictures and Associated Audio

ISO/IEC JTC1/SC29/WG11 MPEG 92/242 July 1992

Title:	Some Modifications for Rate Control of TM1
Purpose:	Proposal for Core Experiments
Source:	Wataru KAMEYAMA, Yasuo KATAYAMA (GC Technology Corp., JAPAN)

1 Introduction

According to MPEG 92/160, TM1, the rate control is described to use three kinds of buffer for Q step control, d_j^i , d_j^p and d_j^b for I, P and B-picture, respectively. As the reason why not to use a single buffer is missing in this document, we have examined to use a single buffer for Q step control. And we have estimated whether the initial value of avg_act is adequate or not.

Some simulation results shows that a single buffer for Q step is enough for rate control step 2 and initial value of avg_act described in rate control step 3 is not adequate.

2 Single Buffer for Step 2

As described in TM1, three kinds of buffer, d_j^i , d_j^p and d_j^b , are to be estimated to derive Q step size, Q_j . One of the merits to use these may be to produce pictures at almost constant quality for each picture type. However, we should examine which Q control is better, estimated by three buffers or single buffer for MPEG2 Test Model. Here, we propose how to use single buffer for TM.

2.1 Estimating Q

For a single buffer control, Q step is calculated as following equations.

$$Q_j^i = \frac{d_j \times 31}{r} \tag{1}$$

$$Q_j^p = K_p \times \frac{d_j \times 31}{r} \tag{2}$$

$$Q_j^b = K_b \times \frac{d_j \times 31}{r} \tag{3}$$

$$d_0 = 10 \times \frac{r}{31} \tag{4}$$

And a single buffer fullness, d_j , is computed as following.

$$d_j = d_0 + B_{j-1} - \frac{T_{i,b,p} \times (j-1)}{MB_cnt}$$
(5)

2.2 Comparison

Table 1 shows the simulation result of comparison between TM1 rate control and proposed single buffer control.

Sequence	# of Frames	# of buffer	SNR Y	SNR Cb	SNR Cr	Mean Bit Rate
Flower Garden	150	3	29.64	32.93	34.69	4001848.6
		1	29.69	32.99	34.75	4000029.4
Mobile & Calendar	150	3	28.34	34.24	34.26	4001290.0
		1	28.29	34.16	34.17	4000850.4
Bicycle	150	3	27.64	33.63	34.39	4003465.2
		1	27.61	33.59	34.34	4000426.4
	Prediction	: Frame/Fie	ld			

4 Mbps

Table 1: Rate control of three buffers and single buffer

As the result of simulation following points are to be stated.

Bit Rate:

- 1. SNRs are almost same both for single and three buffers.
- 2. Output bit rate is controlled tighter by single buffer than by three buffers.
- 3. K_p and K_b are almost sufficient for Q control, however, another values may be examined.

We conclude that single buffer control is enough and achieves tighter buffer control.

3 avg_act in Step **3**

Figure 1 shows the transition of avg_act in coding frame order for the first GOP of several test sequences. For example, avg_act of coding frame No. 0 means average value of the act_i of No. 0 frame.

As showing the simulation results in Figure 1, the initial value of avg_act 400 is not adequate. This value should be around 20,000.

4 Conclusion

As the simulation results of ours, followings are pointed.

1. Single buffer control in rate control step 2 for Q step is enough and achieves much tighter rate control.

Figure 1: Transition of avg_act

2. The initial value of avg_act in rate control step 3 should be 20,000, not be 400.

We propose the modifications for TM rate control at above two points.